
MATH 245 F22, Exam 2 Solutions

1. Carefully define the following terms: Proof by (vanilla) Induction, Big O.

To prove ∀n ∈ N, P (n) by (vanilla) induction, we must (i) prove P (1); and (2) prove
∀n ∈ N, P (n) → P (n + 1). Let an, bn be sequences. We say that an is big O of bn if
∃n0 ∈ N, ∃M ∈ R, ∀n ≥ n0, |an| ≤M |bn|.

2. Carefully state the following theorems: Proof by Cases theorem, Division Algorithm theorem.
To prove p→ q by cases, we must find propositions c1, . . . , ck such that c1 ∨ · · · ∨ ck ≡ T , and
prove each of (p ∧ c1)→ q, . . . , (p ∧ ck)→ q. The Division Algorithm theorem states: for all
integers a, b with b ≥ 1, there are unique integers q, r such that a = bq + r and 0 ≤ r < b.

3. Prove or disprove: For all n ∈ Z, we must have (n−1)n(n+1)
3 ∈ Z.

The statement is true. Let n ∈ Z be arbitrary. Applying the Division Algorithm theorem to
n, 3, we get integers q, r with n = 3q + r and 0 ≤ r < 3. We now have three cases:
Case r = 0: (n−1)n(n+1)

3 = (n−1)(3q)(n+1)
3 = (n− 1)(q)(n + 1) ∈ Z.

Case r = 1: (n−1)n(n+1)
3 = (3q+1−1)(n)(n+1)

3 = (q)(n)(n + 1) ∈ Z.

Case r = 2: (n−1)n(n+1)
3 = (n−1)(n)(3q+2+1)

3 = (n− 1)(n)(q + 1) ∈ Z.

In all three cases, we have (n−1)n(n+1)
3 ∈ Z.

NOTE: We cannot prove this by induction, because the domain is Z.

4. Prove or disprove: For all x ∈ R, we must have xbxc ≤ xdxe.
The statement is false, so we need a counterexample. Any negative number that is not
an integer will work, but you need to pick a specific one. For example, take x = −0.5:
xbxc = (−0.5)(−1) = 0.5, while xdxe = (−0.5)(0) = 0. Note that 0.5 > 0.

5. Prove or disprove: For all n ∈ N, we must have 5n > n2.
The statement is true, and the proof will need (vanilla) induction.
Base case n = 1: 51 = 5 > 1 = 12. Verified.
Inductive case: Let n ∈ N be arbitrary, and suppose that 5n > n2. Multiply both sides
by 5, and we get 5n+1 = 5 · 5n > 5n2 = n2 + 2n2 + 2n2. Obviously n2 ≥ n2. Also,
since n ≥ 1, we have 2n2 ≥ 2n. Lastly, since n ≥ 1, we have 2n2 ≥ 1. Adding these, we get
n2+2n2+2n2 ≥ n2+2n+1 = (n+1)2. Combining with the previous, we get 5n+1 > (n+1)2.

6. Solve the recurrence with initial conditions a0 = 3, a1 = −1 and relation an = an−1 + 6an−2
(n ≥ 2).

The characteristic polynomial is r2−r−6 = (r−3)(r+2). Hence the general solution is an =
A3n+B(−2)n. We now apply our initial conditions to get 3 = a0 = A30+B(−2)0 = A+B, and
−1 = a1 = A31+B(−2)1 = 3A−2B. We solve the linear system {A+B = 3, 3A−2B = −1},
getting A = 1, B = 2. Hence, our desired specific solution is an = 3n + 2(−2)n.

7. Suppose that an algorithm has runtime specified by recurrence relation Tn = 9Tn/3 + n2.
Determine what, if anything, the Master Theorem tells us.

This relation is of the type handled by the Master Theorem, with a = 9, b = 3, k = 2. We
now calculate d = logb a = log3 9 = 2. Because d = k, the “middle cn” case applies, and the
theorem tells us that Tn = Θ(n2 log n).



8. Let an be a sequence of positive real numbers with limn→∞ an = ∞. Set bn = 1 + an. Prove
that an = Θ(bn).

There are two things to prove:
Proving an = O(bn) (the easier part): Take n0 = 1,M = 1, and let n ≥ n0 be arbitrary. We
have |an| = an ≤ 1 + an = bn = M |bn|, so |an| ≤M |bn|.
Proving an = Ω(bn) (the harder part): Because limn→∞ an = ∞, there is some N such that
an ≥ 1 for every n ≥ N . Take n0 = N,M = 2, and let n ≥ n0 be arbitrary. We have
M |an| = 2an = an + an ≥ an + 1 = bn = |bn|, so M |an| ≥ |bn|.
NOTE: The hypothesis limn→∞ an = ∞ is needed only for part of the proof of an = Ω(bn)
(this part is worth a total of one point). If the sequence an did not approach∞, the statement
might be false: e.g. if an = 1

n , then an 6= Ω(1 + an).

9. Prove: ∀x ∈ R, !n ∈ Z, 2n ≤ x < 2n + 2.
Let x ∈ R be arbitrary. Suppose n1, n2 ∈ Z with 2n1 ≤ x < 2n1 + 2 and 2n2 ≤ x < 2n2 + 2.
We recombine these inequalities to get 2n1 ≤ x < 2n2 + 2 and 2n2 ≤ x < 2n1 + 2. The first
one we divide by 2 to get n1 < n2 + 1. The second we divide by 2 and subtract 1 to get
n2 − 1 < n1. Combining, we get n2 − 1 < n1 < n2 + 1. By a theorem from the book (Thm
1.12.d) we conclude n1 = n2.

10. Prove: ∀x ∈ R, ∃n ∈ Z, 2n ≤ x < 2n + 2.

Let x ∈ R be arbitrary. All we need is to find some n ∈ Z making the double inequality true.

METHOD 1: Use Maximal Element Induction. Define S = {m ∈ Z : m ≤ x
2}. This set is

nonempty, being a half-line, and has upper bound x
2 . By Maximal Element Induction, S has

some maximal element n ∈ Z, where n ≤ x
2 and n+1 > x

2 . Multiply each by 2 and recombine
to get 2n ≤ x < 2n + 2, as desired.

METHOD 2: Use Minimal Element Induction. Define S = {m ∈ Z : m > x
2 − 1}. This set is

nonempty, being a half-line, and has lower bound x
2 − 1. By Minimal Element Induction, S

has some minimal element n ∈ Z, where n > x
2 − 1 and n − 1 ≤ x

2 − 1. Multiply each by 2
and recombine to get 2n ≤ x < 2n + 2, as desired.

METHOD 3: Use properties of floors. Take n = bx2 c, an integer. By the definition of floor,
we have n ≤ x

2 < n + 1. Multiply through by 2 to get 2n ≤ x < 2n + 2, as desired.

METHOD 4 (found by a clever student): Take t = bxc, an integer. By definition of floor, we
have t ≤ x < t + 1. By a theorem from the book (Thm 1.6), t is either even or odd.
Case t is even: There is n ∈ Z with t = 2n. Hence 2n = t ≤ x < t + 1 = 2n + 1 < 2n + 2.
Case t is odd: There is n ∈ Z with t = 2n + 1. Hence 2n < 2n + 1 = t ≤ x < t + 1 =
(2n + 1) + 1 = 2n + 2.
In both cases, we have found some integer n with 2n ≤ x < 2n + 2.


