MATH 245 F22, Exam 2 Solutions

1. Carefully define the following terms: Proof by (vanilla) Induction, Big O.

To prove $\forall n \in \mathbb{N}, P(n)$ by (vanilla) induction, we must (i) prove $P(1)$; and (2) prove $\forall n \in \mathbb{N}, P(n) \rightarrow P(n+1)$. Let a_{n}, b_{n} be sequences. We say that a_{n} is big O of b_{n} if $\exists n_{0} \in \mathbb{N}, \exists M \in \mathbb{R}, \forall n \geq n_{0},\left|a_{n}\right| \leq M\left|b_{n}\right|$.
2. Carefully state the following theorems: Proof by Cases theorem, Division Algorithm theorem. To prove $p \rightarrow q$ by cases, we must find propositions c_{1}, \ldots, c_{k} such that $c_{1} \vee \cdots \vee c_{k} \equiv T$, and prove each of $\left(p \wedge c_{1}\right) \rightarrow q, \ldots,\left(p \wedge c_{k}\right) \rightarrow q$. The Division Algorithm theorem states: for all integers a, b with $b \geq 1$, there are unique integers q, r such that $a=b q+r$ and $0 \leq r<b$.
3. Prove or disprove: For all $n \in \mathbb{Z}$, we must have $\frac{(n-1) n(n+1)}{3} \in \mathbb{Z}$.

The statement is true. Let $n \in \mathbb{Z}$ be arbitrary. Applying the Division Algorithm theorem to $n, 3$, we get integers q, r with $n=3 q+r$ and $0 \leq r<3$. We now have three cases:
Case $r=0: \frac{(n-1) n(n+1)}{3}=\frac{(n-1)(3 q)(n+1)}{3}=(n-1)(q)(n+1) \in \mathbb{Z}$.
Case $r=1: \frac{(n-1) n(n+1)}{3}=\frac{(3 q+1-1)(n)(n+1)}{3}=(q)(n)(n+1) \in \mathbb{Z}$.
Case $r=2: \frac{(n-1) n(n+1)}{3}=\frac{(n-1)(n)(3 q+2+1)}{3}=(n-1)(n)(q+1) \in \mathbb{Z}$.
In all three cases, we have $\frac{(n-1) n(n+1)}{3} \in \mathbb{Z}$.
NOTE: We cannot prove this by induction, because the domain is \mathbb{Z}.
4. Prove or disprove: For all $x \in \mathbb{R}$, we must have $x\lfloor x\rfloor \leq x\lceil x\rceil$.

The statement is false, so we need a counterexample. Any negative number that is not an integer will work, but you need to pick a specific one. For example, take $x=-0.5$: $x\lfloor x\rfloor=(-0.5)(-1)=0.5$, while $x\lceil x\rceil=(-0.5)(0)=0$. Note that $0.5>0$.
5. Prove or disprove: For all $n \in \mathbb{N}$, we must have $5^{n}>n^{2}$.

The statement is true, and the proof will need (vanilla) induction.
Base case $n=1: 5^{1}=5>1=1^{2}$. Verified.
Inductive case: Let $n \in \mathbb{N}$ be arbitrary, and suppose that $5^{n}>n^{2}$. Multiply both sides by 5 , and we get $5^{n+1}=5 \cdot 5^{n}>5 n^{2}=n^{2}+2 n^{2}+2 n^{2}$. Obviously $n^{2} \geq n^{2}$. Also, since $n \geq 1$, we have $2 n^{2} \geq 2 n$. Lastly, since $n \geq 1$, we have $2 n^{2} \geq 1$. Adding these, we get $n^{2}+2 n^{2}+2 n^{2} \geq n^{2}+2 n+1=(n+1)^{2}$. Combining with the previous, we get $5^{n+1}>(n+1)^{2}$.
6. Solve the recurrence with initial conditions $a_{0}=3, a_{1}=-1$ and relation $a_{n}=a_{n-1}+6 a_{n-2}$ ($n \geq 2$).
The characteristic polynomial is $r^{2}-r-6=(r-3)(r+2)$. Hence the general solution is $a_{n}=$ $A 3^{n}+B(-2)^{n}$. We now apply our initial conditions to get $3=a_{0}=A 3^{0}+B(-2)^{0}=A+B$, and $-1=a_{1}=A 3^{1}+B(-2)^{1}=3 A-2 B$. We solve the linear system $\{A+B=3,3 A-2 B=-1\}$, getting $A=1, B=2$. Hence, our desired specific solution is $a_{n}=3^{n}+2(-2)^{n}$.
7. Suppose that an algorithm has runtime specified by recurrence relation $T_{n}=9 T_{n / 3}+n^{2}$. Determine what, if anything, the Master Theorem tells us.
This relation is of the type handled by the Master Theorem, with $a=9, b=3, k=2$. We now calculate $d=\log _{b} a=\log _{3} 9=2$. Because $d=k$, the "middle c_{n} " case applies, and the theorem tells us that $T_{n}=\Theta\left(n^{2} \log n\right)$.
8. Let a_{n} be a sequence of positive real numbers with $\lim _{n \rightarrow \infty} a_{n}=\infty$. Set $b_{n}=1+a_{n}$. Prove that $a_{n}=\Theta\left(b_{n}\right)$.
There are two things to prove:
Proving $a_{n}=O\left(b_{n}\right)$ (the easier part): Take $n_{0}=1, M=1$, and let $n \geq n_{0}$ be arbitrary. We have $\left|a_{n}\right|=a_{n} \leq 1+a_{n}=b_{n}=M\left|b_{n}\right|$, so $\left|a_{n}\right| \leq M\left|b_{n}\right|$.
Proving $a_{n}=\Omega\left(b_{n}\right)$ (the harder part): Because $\lim _{n \rightarrow \infty} a_{n}=\infty$, there is some N such that $a_{n} \geq 1$ for every $n \geq N$. Take $n_{0}=N, M=2$, and let $n \geq n_{0}$ be arbitrary. We have $M\left|a_{n}\right|=2 a_{n}=a_{n}+a_{n} \geq a_{n}+1=b_{n}=\left|b_{n}\right|$, so $M\left|a_{n}\right| \geq\left|b_{n}\right|$.
NOTE: The hypothesis $\lim _{n \rightarrow \infty} a_{n}=\infty$ is needed only for part of the proof of $a_{n}=\Omega\left(b_{n}\right)$ (this part is worth a total of one point). If the sequence a_{n} did not approach ∞, the statement might be false: e.g. if $a_{n}=\frac{1}{n}$, then $a_{n} \neq \Omega\left(1+a_{n}\right)$.
9. Prove: $\forall x \in \mathbb{R},!n \in \mathbb{Z}, 2 n \leq x<2 n+2$.

Let $x \in \mathbb{R}$ be arbitrary. Suppose $n_{1}, n_{2} \in \mathbb{Z}$ with $2 n_{1} \leq x<2 n_{1}+2$ and $2 n_{2} \leq x<2 n_{2}+2$. We recombine these inequalities to get $2 n_{1} \leq x<2 n_{2}+2$ and $2 n_{2} \leq x<2 n_{1}+2$. The first one we divide by 2 to get $n_{1}<n_{2}+1$. The second we divide by 2 and subtract 1 to get $n_{2}-1<n_{1}$. Combining, we get $n_{2}-1<n_{1}<n_{2}+1$. By a theorem from the book (Thm 1.12.d) we conclude $n_{1}=n_{2}$.
10. Prove: $\forall x \in \mathbb{R}, \exists n \in \mathbb{Z}, 2 n \leq x<2 n+2$.

Let $x \in \mathbb{R}$ be arbitrary. All we need is to find some $n \in \mathbb{Z}$ making the double inequality true. METHOD 1: Use Maximal Element Induction. Define $S=\left\{m \in \mathbb{Z}: m \leq \frac{x}{2}\right\}$. This set is nonempty, being a half-line, and has upper bound $\frac{x}{2}$. By Maximal Element Induction, S has some maximal element $n \in \mathbb{Z}$, where $n \leq \frac{x}{2}$ and $n+1>\frac{x}{2}$. Multiply each by 2 and recombine to get $2 n \leq x<2 n+2$, as desired.
METHOD 2: Use Minimal Element Induction. Define $S=\left\{m \in \mathbb{Z}: m>\frac{x}{2}-1\right\}$. This set is nonempty, being a half-line, and has lower bound $\frac{x}{2}-1$. By Minimal Element Induction, S has some minimal element $n \in \mathbb{Z}$, where $n>\frac{x}{2}-1$ and $n-1 \leq \frac{x}{2}-1$. Multiply each by 2 and recombine to get $2 n \leq x<2 n+2$, as desired.
METHOD 3: Use properties of floors. Take $n=\left\lfloor\frac{x}{2}\right\rfloor$, an integer. By the definition of floor, we have $n \leq \frac{x}{2}<n+1$. Multiply through by 2 to get $2 n \leq x<2 n+2$, as desired.
METHOD 4 (found by a clever student): Take $t=\lfloor x\rfloor$, an integer. By definition of floor, we have $t \leq x<t+1$. By a theorem from the book (Thm 1.6), t is either even or odd.
Case t is even: There is $n \in \mathbb{Z}$ with $t=2 n$. Hence $2 n=t \leq x<t+1=2 n+1<2 n+2$.
Case t is odd: There is $n \in \mathbb{Z}$ with $t=2 n+1$. Hence $2 n<2 n+1=t \leq x<t+1=$ $(2 n+1)+1=2 n+2$.
In both cases, we have found some integer n with $2 n \leq x<2 n+2$.

